UML Design and Auto-Generated Code:
Issues and Practical Solutions

Ilya Lipkin and Dr. A. Kris Huber
Hill Air Force Base

This article presents issues encountered as well as practical solutions to using the Unified Modeling Langnage (UML) for design
and antomatic code generation. Topics presented include general issues found with UML. on a real-time systems design project.

his article is based on experience gained

during the early history of a project
being worked on at Hill Air Force Base,
Utah. One of the customer requirements on
this project was a specific development tool
based on Unified Modeling Language
(UML) Version 1.3, namely Rational Rose
RealTime (RoseRT).

The project issues and solutions pre-
sented in this article are from the real-time
control system. The configured software
items consist of software design elements
expressed in UML from which C++ code
can be automatically generated. The obser-
vations presented in this article do not nec-
essartily apply to all UML-based develop-
ment tools, but the authors have made an
attempt to raise a few issues of general
interest to those involved in similar projects.

Overview of UML

UML is a modeling language developed by
Grady Booch, James Rumbaugh, and Ivar
Jacobson, and many other contributors to
the Object Management Group (OMG).
The focus of UML is to model systems
using object-oriented concepts and method-
ology. UML consists of a set of model ele-
ments that standardize the design descrip-
tion. These elements include a number of
fundamental model elements and modeling
concepts, in addition to views that allow
designers to examine a design from different
perspectives, and diagrams to illustrate the
relationships among model elements.

Several views such as Use-Case View,
Logical View, Component View, Concur-
rency View, and Deployment View create a
complete description of the system design.
Within each view, an organized set of dia-
grams and other model elements are visible.
Diagrams include use-case diagrams, class
diagrams, object diagrams, sequence dia-
grams, collaboration diagrams, statechart
diagrams, activity diagrams, component dia-
grams, and deployment diagrams. Some key
primitive model elements are states, transi-
tions, messages, classes, class roles, attrib-
utes, and operations [1].

The UML language is complete enough
that it offers the exciting ability to allow the
creation of auto-generated code that imple-
ments the design. The code can be generat-

November 2005

ed from the system description of the
model through the use of diagrams and
other model elements.

UML Elements for Real-Time

Systems Design

Designing real-time systems is challenging,
In UML, an active class model element was
introduced to address this challenge. The
purpose of this element was to help simpli-
fy both the design and the implementation.

The active class model element consists
of a communication structure description
and a behavioral description. The communi-
cation structure is described using a collab-
oration diagram that shows the ports
through which it sends and receives mes-
sages to and from other active classes. The
behavior is desctibed using a statechart dia-
gram that shows how the active class acts
and reacts to its environment'. In other
words, the active class is a standalone capsule
of software that talks to its environment
through ports (specified in the structure dia-
gram), and performs actions as it transitions
through a sequence of states (specified by
the statechart diagram).

The characteristics of a run-time sys-
tem (RTS) object and the UML active class
were determined to simplify the process of
real-time software design and implementa-
tion. In addition, by encapsulating calls to
the operating system of the target plat-
form within the RTS, the auto-generated
implementation of the UML design can be
made largely platform-independent. Real-
time application design with UMLis dis-
cussed in [2].

UML Issues and Practical

Solutions

While working on the project, several prob-
lems dealing with UML for design and
implementation were encountered. Below
are some of the issues related to UML
design and implementation. These issues,
some solutions, and open questions will be
presented using small illustrations.

Issue No. I: State Diagram Clutter

When designing with UML, it is easy for a
developer to put too much information
into a single diagram. When this happens,

information overload will make the design
difficult to understand and maintain.

Example

It is possible to describe the behavior of
an entire design in a single UML statechart
diagram. To demonstrate the potential for
diagram clutter, let us consider this simple
case: There is a system model that will take
user input, button press (an event), and
convert it to a textual presentation of the
button press to be displayed on screen. An
all-UML solution for this simple case is
shown in Figure 1.

The design consists of a set of three
choice points and two states with transitions
between them. Each choice point represents
a decision to be made when an event-trig-
gered transition has occurred. State S1 rep-
resents the entry into the system model and
S2 is the final state of the system model.

Since this system model is designed
with RoseRT UML elements, the state
machine solution is a fully functional
implementation and design. For imple-
mentation, C++ is auto-generated from
the UML design. This simple design solu-
tion, although straightforward, is some-
what hard to understand from the state-
chart diagram in Figure 1. This is because
the view of the system is cluttered by tran-
sition labels and a large number of UML
elements presented in a small visual area.

Practical Solutions

In Figure 2 (see page 14), the solution to the
same problem is shown, but utilizing a
mixed UML and C++ approach to simplify
the model. The action code in the transition
Event would perform the logic implemented
by the choice points (citcles) in Figure 1, as

Figure 1: AJ-UML Solution

www.stsc.hill.af.mil 13

Design

Initial

Figutre 2: Combined UML) C++ Solution

illustrated by the following pseudocode:

if(Event1) then
display string1

else if(Event2) then
display string2

else if(Event3) then
display string3

This solution moves logic that is
straightforward and redundant into the state
transition between states S1 and S2. In addi-
tion, it also keeps the same overall logic of
the UML statechart of Figure 1.

Another benefit to the UML and C++
solution is that the size of the system model
can be reduced. The Figure 1 solution pro-
duces an implementation consisting of 315
lines of auto-generated code and three lines
of user code (code that is inserted by the user
and copied verbatim by the code generator).
On the other hand, the mixed UML/C++
solution in Figure 2 produces an implemen-
tation consisting of 215 lines of auto-gener-
ated code and 14 lines of user C++ code.

This example demonstrates that the
size of the auto-generated code can be
reduced through using a mixed UML/
C++ design approach. The code efficien-
cy and maintainability also seem to be
improved in this case, although this will
not be true for all designs. The maintain-
ability of a UML-based software object
will depend upon several factors, including
the maintenance team’s relative proficien-
cy with UML compared to the undetlying
implementation language.

An alternate method of reducing the
number of visual elements on a model dia-
gram is to design hierarchical state
machines. If hierarchal statecharts are sup-
ported by the design tool, multiple states can
be combined to create a clearer, high-level
statechart containing fewer states. This

approach to reducing visual elements has an
additional benefit of increased portability of
the design, but may not achieve the imple-
mentation efficiency of the combined

UML/C++ approach.

Guideline

Although UML is very flexible, some imple-
mentation and design considerations should
be addressed through conventional means
by either manually coding or using system
flow diagrams outside of UML [3].

It is important to keep the number of
states and transitions to a minimum. As the
model complexity increases, understanding
of the design can be decreased due to clut-
ter in the design diagrams. The efficiency
of the auto-generated implementation of
the design can also be reduced. Depending
upon the need for implementation efficien-
cy, and the team member familiarity with
UML, an appropriate design philosophy
should be established for the project.

Issue No. 2: UML Metrics

The authors were not aware of any useful
software size metrics that could be used
with UML models. Using the source lines of
code (SLOC) metric on auto-generated
code tended to overemphasize the UML
portion of a mixed UML/C++ model (with
the UML portion being auto generated and
the C++ portion being user code). Metrics
were needed both for project estimation and
project tracking,

Discussion

Many design rules have been proposed for
judging UML design quality [4]. However, it
is hard to know how to track effort used on
developing software using such metrics.
Obviously, SLOC for auto-generated code
size could be misleading, but to be feasible,
the project tracking and estimation tools
often requite using a scalar metric like
SLOC rather than a vector of metrics. The
challenge is to correlate the size metric to
the amount of development effort required
for design and implementation of the soft-
ware. Experimentation with the SLOC met-
ric upon auto-generated code seemed to

Table 1: Weights and Counts for Key UML Model Elements

Model Element

Weight (IU)

Counts for Figure 1

Counts for Figure 2

States?

2

Transitions

Capsule Roles

Ports

Attributes

Operations

Signals

User Code

TOTAL (IU)

14 CrossTALK The Journal of Defense Software Engincering

overemphasize the UML portion of a mixed
UML/C++ model.

Example
How do we judge the total size of the mod-
els of Figures 1 and 2?

Practical Solution

To arrive at the solution presented below, it
was necessary to experiment with more than
one metric for total size. One of the possi-
ble methods is illustrated in the solution of
issue No. 1: Measure the auto-generated
code separately from the user code that is
manually maintained. This approach is ade-
quate for some purposes, but in other situa-
tions, a metric is needed that captures the
size in a single number.

To remedy shortfalls of the previous
approach, a second metric was defined that
consists of a single number to represent
model size. A utility tool was developed that
could traverse the model and provide a total
count of several of the key UML model ele-
ments. Based on counts of model elements
and user code SLLOC, this metric could be
calculated as a weighted sum. The weights
shown in the second column of Table 1
were used to give a size estimate in terms of
implementation units (IU).

Using this UML metric, the size of the
models in Figures 1 and 2 ate calculated
from the weighted sum of their model ele-
ments to be 107 and 52 IU, respectively. The
weights associated with this metric were
estimated subjectively based on the RoseRT
user interface for each of the model ele-
ments. The resulting IU metric has a level of
detail similar to SLOC, and the measure may
be thought of as a SLOC-equivalent metric.
The weights associated with this metric have
yet to be fully substantiated due to insuffi-
cient historical data for the project. For this
reason, project history data is maintained in
a raw format so that new weights (and even
new metrics) can be applied to the entire
project history.

This second metric for estimating the
size of a combined UML/C++ model/
implementation is similar in spirit to the
function points approach. In place of logi-
cal ot functional elements, UML model ele-
ments were given SLOC-equivalent weights.

Guideline

It is best to find a metric that correlates
well to the quantity desired. Employ UML
design tools that contain rich application
programming interfaces (APIs) to facili-
tate development of utilities that automate
the process of metrics calculation.
Collecting data in a raw format can facili-
tate adjustment or customization of the
metrics.

November 2005

Issue No. 3: Documentation for
Graphical Elements

Although UML implements graphical meth-
ods of presenting software solutions, it is
very challenging to create a self-document-
ing model. Traditional documentation of
the graphical model is still needed.

Discussion

Many developers consider documentation
to be the least favorable task of any new
design. UML, combined with automatic
report generation capability in the tool,
allows the possibility of design and imple-
mentation to be self-documenting. When
using UML for the design task, the designer
must create a set of UML diagrams and
other graphical information such as states,
transitions, and illustrations of the struc-
tured relationship among objects. The final
product is a model that contains design
information in a graphical format that
should be suitable for documentation.
Ideally if the design is well drawn, then
graphical information is actually usable for
documentation, and a lot of time and effort
savings can be realized.

Example

Figure 1 is an example of a UML model that
is not self-documenting, Looking at this fig-
ure, several questions can be raised. What do
choice points do? What is being compared?
What do #rue and false labels mean? What do
State S1 and State S2 represent? The answer
to these questions is that S1 is an initial state
and S2 is the final state. The choice points
are the logic to set the string to be displayed
based on events that occur. True and false
label the condition-dependent transitions
from the choice points.

UML tools can produce a sequence
diagram from a statechart diagram, as well
as generate a number of documentation
reports. These typically exclude any user
code implementation documentation.
Project experience found customization of
documentation reports to be non-trivial.

Practical Solution

In the example of Figure 1, a set of sup-
porting documentation is still necessary to
accompany a graphical design. Although
this seems to be a very obvious observation,
the project currently being worked on had
omitted to document the graphical design.
As a result, the loss in ability to understand
and maintain statecharts had increased cost
and delayed schedule. In addition, maintain-
ability of the real-time system had been
drastically reduced. Although prudent
choice of names for the model elements can
help make the diagrams more self-docu-
menting, the use of UML use cases and

November 2005

UML Design and Auto-Generated Code: Issues and Practical Solutions

their relationship to the graphical state-chart
solutions must be documented rather than
assumed to be self-documenting, Software
developers must come up with a set of doc-
umentation that bridges the link between
use cases and their UML graphical represen-
tations. The final gap to be filled is the aug-
mentation of documentation generated
automatically from UML with manual
description for user code and how it fits
with design implementation.

Guideline

Although UML presents design visually,
comments on the states or any other model
elements are still needed. These comments
clarify the overall solution and explain some
of the design choices of the model diagram
[5]. Self-documenting features of UML are
still no substitute for design notes or addi-
tional supporting documentation on design
decisions.

Issue No. 4: Design Portability
Between UML Tools (Open Question)
Using custom (i.e., nonstandard) features of
UML tools reduces portability of a design
to other UML-compliant development
tools.

Example

RoseRT had introduced additional concepts
into UML to accommodate the needs of the
real-time environment, and to allow for a
development tool to produce auto-generat-
ed code solutions. One of the new concepts
to UML introduced by RoseRT was a struc-
ture diagram, Figure 3. Structure diagrams
are used in RoseRT to link capsules togeth-
er in a coherent way.

Practical Solution

Unfortunately, there is no straightforward
solution for this problem; the only thing that
can be used is a set of mitigation strategies.
One of those mitigation strategies was the
choice of product itself. Although this was
done at the program office, the UML imple-
mentation chosen was from the primary
contributors to the UML standard. Struc-
ture diagrams were not part of UML initial-
ly, but rather RoseRT’ structure diagrams
were based on the UML 1.3 collaboration
diagram. Another notable difference is the
notion of capsules, which are presented in
Figures 1 and 2. Capsules are, in essence,
UML 1.3 active classes and will be part of
UML 2.0 as structured classes.

Another strategy is to avoid external API
calls in the user code portion of the model,
as it will make the design less portable to
other UML solutions. Also, the RoseRT
UML tools come with a set of custom API
calls that can be used to enhance design and

/ newCapsule1R1
: NewCapsule1

/ newCapsule2R1
: NewCapsule2

/ newCapsule3R1
: NewCapsule3

Figure 3: Structure Diagram

development efforts, but it is best to avoid
using them if design portability is an issue.

Guideline

Some of the UML development tools offer
specialized controls or functionality that do
not exist in other tools. It is a good idea to
explore means for design using standardized
UML components trather than customized
ones. This requires the design team to
become familiar with the UML standards to
recognize and avoid nonstandard items,
thereby providing portability across devel-
opment tool vendors.

Issue No. 5: Cross Language and
Cross Platform Development
Target languages or their compilers can
have platform-specific features that defeat
the portability of a mixed UML/uset-
code solution.

Discussion

One of the advantages of UML develop-
ment is that it is language-neutral, and plat-
form-independent. Using UML, it is possi-
ble to disconnect the design from possible
issues of implementation that are based on
the choice of source code language. In addi-
tion, the ability to take UML design as is,
and to auto-generate source code from it,
allows for the creation of implementation
directly from the design [6]. Due to UML
being language neutral, the solution will not
change if the target language is C/C++,
Java, or anything else [7]. In addition, if one
of the requirements is to maintain the same
code in two languages, it becomes simpler
to have bug reports and fixes done in one
place rather then two.

The ability to create a design that is plat-
form-independent provides a set of unique
opportunities and challenges. Cost may be
reduced by enabling a portion of testing to
take place on a development platform that
does not necessarily include a simulation of
the target environment. Multi-platform
testing may have a beneficial effect of find-
ing some defects that would otherwise be
masked on one of the individual platforms.
The challenge of platform-independent
design is to ensure that special require-
ments of the final target environment are

www.stsc.hill.af.mil 15

Design

State No., Name | Description

Attributes

Initial System not running

Timer event set to 30 seconds

| Green

On timer time-out event go to(goYellow) Yellow

Timer event set to 45 seconds

Yellow

On timer time-out event go to(goRed) Red

Timer event set to 10 seconds

Red

Table 2: State Specification Tenmplate

On timer time-out event go to(goGreen) Green

Timer event set to 30 seconds

Initial)
Aa
goRed
goGreen
YELLOW
goYellow
+ ! timer
GREEN . Timing
\. J

Figure 4: Working UML Design and
Implementation Solution for Traffic Light

being considered in the design of the user
code portion of the UML model.

Example
A traffic light design scenario can be used
to demonstrate the ability to have a cross-
language and cross-platform development.
This small UML design example shows
both design and implementation.
Requirements for traffic light are pre-
sented below. The traffic light has three
colors: red, yellow, and green. To change
from green to yellow, an event of time
expiring is needed. The events always hap-
pen in a fixed sequence of green to yellow
to red. It is not allowed to go from green
to red, for example. The State
Specification Template (Table 2) is used to
describe a sequence of state-change
events [8]. Timer events are written as
generic RoseRT descriptions for each
event as “timer.informlIn(timeout);” this is
the only line of code that is written for the
entire design and implementation.

Practical Solution

The UML solution in Figure 4 is complete-
ly language- and platform-neutral. There is
no user code associated with it that is lan-
guage- or platform-specific. Therefore it is
possible for an auto-code generation engine
to translate the UML to a destination lan-
guage or platform of choice.

Guideline

When implementing UML design, it is best
to avoid considerations of how code gener-
ation will translate UML to a target lan-
guage or system platform for the auto-gen-
erated portion of the solution. However,
when entering user code into mixed UML

16 CrossTALK The Journal of Defense Software Engincering

models, extra care must be taken to avoid a
platform-specific syntax in the implementa-
tion language.

Conclusion

UML design introduces new and unex-
plored paradigms that can either simplify
the task or make it overly complex. It is
important to adhere to proven methods
and concepts to utilize what is available.
Practical solutions and guidelines related
to diagram clutter, UML metrics, docu-
mentation, design portability, and cross-
language/cross-platform development
presented in this article are the tip of an
iceberg in a great sea of development. 4

References

1. Sanderfer, Lynn. “How and Why to
Use the Unified Modeling Language.”
CROSSTALK, June 2005 <www.stsc.
hill.af.mil/crosstalk/2005/06/0506
Sanderfer.html>.

2. Gomaa, Hassan. Designing Concur-
rent, Distributed, and Real-Time

Applications With UMI.. Addison-
Wesley, 2000.

3. Larman, Craig. Applying UMI. and

Patterns: An Introduction to Object-
Oriented Design and the Unified

Process. 2nd ed. Prentice-Hall, 2002.

4. Waist, Jirgen. SDMetrics 23 Apr. 2005
<www.sdmetrics.com/LoR.html>.

5. Fowler, Martin. UMI. Distilled: A
Brief Guide to the Standard Object
Modeling Language. 3rd ed. Addison-
Wesley, 2004.

6. Booch, Grady, James Rumbaugh, and

Ivar Jacobson. The Unified Modeling

Language User Guide. 2nd ed.
Addison-Wesley, 2005.

7. Satzinger, John W., Robert B. Jackson,
and Stephen D. Burd. Object-Oriented
Analysis and Design with the Unified
Process. Thomson, 2005.

8. Humphrey, Watts S. A Discipline for

Software Fngineering. Addison-
Wesley, 1995.

Notes

1. In the RoseRT tool, active classes are
called capsules; the associated collabo-
ration diagrams are called s#ructure dia-
grams.

2. Choice points are considered psexu-
dostates that are counted as states when
calculating this metric.

About the Authors

Ilya Lipkin is an elec-
tronics engineer at the
309th Software Mainte-
nance Group at the Og-
den Air Logistics Cen-
ter, Hill Air Force Base,
Utah. His current research interests
include artificial intelligence, human

knowledge capture and analysis, neural
networks, fuzzy logic, user interface
design, software engineering, and cus-
tomer relations management. Lipkin
has a Bachelor of Science in computer
engineering from the University of
Toledo, a Master of Science in com-
puter engineering from the University
of Michigan, and is a doctoral candi-
date at the University of Toledo
Business School.

309 SMXG/MXDEE

7278 4th ST BLDG 100

Hill AFB, UT 84056

Phone: (801) 586-4477

Fax: (801) 586-2042

E-mail: ilya.lipkin@hill.af.mil

A. Kris Huber, Ph.D.,
is an electronics engi-
neer at the 309th Soft-
ware Maintenance Group
at the Ogden Air Logis-
tics Center, Hill Air
Force Base, Utah, where he has been

working for two years on an embedded
software engineering project. Previously,
he worked on video compression algo-
rithm research, development, and
MPEG-4 standardization for Sorenson
Media. His interests are software engi-
neering, computers, and electronic sys-
tems. Huber has a Bachelor of Science
in electrical engineering from Brigham
Young University, and master’s and doc-
torate degrees in electrical engineering
from Utah State University.

309 SMXG/MXDEE

7278 4th ST BLDG 100

Hill AFB, UT 84056

Phone: (801) 586-5535

Fax: (801) 586-2042

E-mail: kris.huber@hill.af.mil

November 2005

